Summary

The Citizen Lab is an academic research group based at the Munk School of Global Affairs &
Public Policy at the University of Toronto in Toronto, Canada.

We analyzed Baidu Input Method as part of our ongoing work analyzing popular mobile and
desktop apps for security and privacy issues. We found that Baidu Input Method for Windows
includes a vulnerability which allows network eavesdroppers to decrypt network transmissions.
This means third parties can obtain sensitive personal information including what users have
typed. We also found privacy and security weaknesses in the encryption used by the Android
and iOS versions of Baidu Input Method. To address these issues, we suggest using HTTPS or
TLS rather than custom-designed network protocols.

Platform File/Package Name Version analyzed

Windows BaiduPinyinSetup_6.0.3.44.exe 6.0.3.44

Android baiduinput_AndroidPhone_1000e.apk (com.baidu.input) | 11.7.19.9

i0OS com.baidu.inputMethod 11.7.20
Table 1: The versions of Baidu Input Method that we analyzed.

Findings

We found that the Android version transmitted keystrokes information via UDP packets to
udpolimeok.baidu.com and that the Windows and iOS versions transmitted keystrokes to
udpolimenew.baidu.com. The Windows version transmitted these keystrokes according to a
weaker protocol, whose UDP payload begins with the bytes 0x03 0x01. The two mobile versions
that we analyzed, namely the Android and iOS versions, transmitted these keystrokes according
to a stronger protocol, whose payload begins with the bytes 0x04 0x00. In the remainder of this
section we explain how a network eavesdropper can decrypt the contents of these messages
transmitted by the Windows version as well as detail multiple weaknesses in the Android and
iOS versions.

Windows

The Windows version of Baidu Input Method encrypts keystrokes using a modified version of
AES. Normally, AES when used with a 128-bit key performs 10 rounds of encryption on each
block. However, we found that the version of AES implemented by the Windows version of
Baidu Input Method uses only 9 rounds but is otherwise equivalent to AES encryption with a
128-bit key.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Round_(cryptography)

The Windows version of Baidu Input Method encrypts keystrokes using the above 9-round AES
algorithm in the following manner. First, a key is derived according to a fixed function (see
Figure 1). Note that the function takes no input nor references any external state and thus
generates the same static key: k; = “\xfi\x9e\xd5H\x072Z\x10\xe4\xef\x06\xc7 .\xa7\xa2\xf26".

def derive fixed key():

key = []

x =0

for 1 in range(1l6):
key.append ((~1 ~ ((i + 11) * (x >> (1 & 3)))) & Oxff)
x += 1937

return bytes (key)

Figure 1: Python code equivalent to the code Baidu Input Method for Windows uses to derive its
fixed key.

Key k; encrypts a generated 128-bit key k,, using 9-round AES in electronic codebook (ECB)
mode and stores it in bytes 28 until 44 of the UDP payload. Key k,, is then used to encrypt the
underlying message, which is a snappy-compressed protobuf serialization, using the same
9-round AES algorithm in ECB mode storing it in bytes 44 until the end of the UDP payload.
When deserialized, we found that the protobuf message includes our typed keystrokes as well
as the name of the application into which we were typing them (see Figure 2).

"nihaocanyoureadthis"
3407918

Ul o~

107
10

N =~

"1133d4c64afbflfeda85d3c497dd6164 (0"
"Wnl | | O"

"6.0.3.44"

"notepad.exe"

SwWw NP -

Figure 2: Excerpt of decrypted information, including what we had typed
(“nihaocanyoureadthis”) and the application into which it was typed (“notepad.exe”).

A vulnerability exists in this protocol that allows a network eavesdropper to decrypt the contents
of these messages. Since AES is a symmetric encryption algorithm, the same key used to
encrypt a message can also be used to decrypt it. Since k; is fixed, any network eavesdropper
with knowledge of k; can decrypt k,, and thus the plaintext contents of each message encrypted

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_(ECB)
https://en.wikipedia.org/wiki/Snappy_(compression)
https://en.wikipedia.org/wiki/Protocol_Buffers

in the manner described above. As we found that users’ keystrokes and the names of the
applications they were using were sent in these messages, a network eavesdropper who is
eavesdropping on a user’s network traffic can observe what that user is typing and into which
application they are typing it by exploiting this vulnerability.

Additionally, we found that key k,, was not securely generated using a secure pseudorandom
number generator (secure PRNG). Instead, it was seeded using a custom-designed PRNG that
we believe to have poor security properties, and, instead of using a high entropy seed, the
PRNG generating k,, was seeded using the message plaintext and the value of a performance
counter. However, even without these weaknesses in the generation of k,,, the protocol is
already completely insecure to network eavesdroppers as described in the above paragraphs.

Android and iOS

To encrypt keystroke information, the Android and iOS versions of Baidu Input Method use
elliptic-curve Diffie-Hellman and a pinned server public key (pk;) to establish a shared secret
key for use in a modified version of AES.

Upon opening the keyboard, before the first outgoing message is sent, the application randomly
generates a client Curve25519 key pair, which we will call sk, and pk.. Then, a Diffie-Hellman
shared secret k is generated using sk, and the pinned pk, key. The first 16 bytes of pk, are
reused as the IV for encryption, and k is used as the symmetric encryption key. The resulting
encrypted ciphertext is then sent along with pk, to the server. The server can then obtain the
same Diffie-Hellman shared secret k from sk, and pk, to decrypt the ciphertext.

Baidu Input Method on Android and iOS encrypts data using a modified version of AES which
mixes bytes differently and uses a modified counter (CTR) mode, illustrated in Figure 3.

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Curve25519

I (ENNNRNRNNNNRNRN (T [TTTTTTT]

1

1 Initialization vector Initialization vector + 1 Initialization vector + 2

! D

|

1

: Key Key

1

! Encrypt Encrypt rypt

1

', Baidu's modified CTR ,

B S /Y I -
(T ITTT T A T IITITT
(T T T T T (TTTTITTTT]
Ciphertext block Ciphertext block partly encrypted twice Last ciphertext block

Figure 3: lllustration of modified CTR mode encryption scheme used by Baidu Input Method on
Android and iOS. Adapted from this figure.

Generally speaking, any CTR cipher mode involves combining an IV with the value i of some
counter, whose combination we shall notate in this document as IV + i. Most commonly, the
counter value used for block i is simply j, i.e., it begins at zero and increments for each
subsequent block, and Baidu’s implementation follows this convention. There is no standard
way to compute IV + jin CTR mode, but the way that Baidu Input Method the IV and i is by
adding i to the left-most 32-bits of the IV, interpreting the IV and counter value in little-endian
byte order. If the sum overflows, then no carrying is performed on bytes to the right of this 32-bit
value. The implementation details we have thus far described do not deviate from a typical CTR
implementation. However, where Baidu’s modified CTR mode differs from ordinary CTR mode is
in how the value IV + jis used during encryption. In ordinary CTR mode, to encrypt block i/ with
key k, you would compute (plain; XOR encrypt(lV + j, k)). In Baidu's modified CTR mode, to
encrypt block i, you would compute encrypt(plain; XOR (IV + i), k). As we will see later, this
deviation will have implications to the security of the algorithm.

While ordinarily CTR mode does not require the final block length to be a multiple of the cipher’s
block size (in the case of AES, 16), Baidu’s modified CTR mode does not automatically possess
this property but rather achieves it by employing ciphertext stealing. If the final block length n is
less than 16, Baidu’s implementation encrypts the final 16 byte block by taking the last (16 - n)
bytes of the penultimate ciphertext block and prepending them to the n bytes of the ultimate
plaintext block. The encryption of the resultant block fills the last (16 - n) bytes of the
penultimate ciphertext block and the n bytes of the final ciphertext block. Note, however, that
this practice only works when the plaintext consists of at least two blocks. Therefore, if there
exists only one plaintext block, then Baidu’s implementation right-zero-pads that block to be 16
bytes.

’ Plaintext block Plaintext block Stolen ciphertext || Plaintext™ \

e e em mm e e e = = = =

https://en.wikipedia.org/wiki/Ciphertext_stealing#/media/File:CipherText_Stealing_(CTS)_on_CBC,_encryption_mode.svg
https://en.wikipedia.org/wiki/Ciphertext_stealing

Privacy issues with IV reuse

Since the IV and key are both directly derived from the client key pair, the IV and key are reused
until the application generates a new key pair. This only happens when the user restarts the
phone, or when the user switches to a different keyboard and back. From our testing, we have
observed the same key and IV in use for over 24 hours. There are various issues that arise from
key and IV reuse.

Reusing the same IV and key means that the same inputs will encrypt to the same encrypted
ciphertext. Additionally, due to the way the block cipher is constructed, if block-sized portions of
the plaintexts are the same, they will encrypt to the same ciphertext blocks. As an example, if
the second block of two plaintexts are the same, the second block of the corresponding
ciphertexts will be the same. Even within the same plaintext, if blocks are similar to each other,
they could encrypt to the same ciphertext blocks.

Weakness in cipher mode

The electronic codebook (ECB) cipher mode is notorious for having the undesirable property
that equivalent plaintext blocks encrypt to equivalent ciphertext blocks, allowing patterns in the
plaintext to be revealed in the ciphertext (see Figure 4 for an illustration).

Figure 4: When a bitmap image (left) is encrypted in ECB mode, patterns in the image are still
visible in the ciphertext (right). Adapted from these figures.

While the modified CTR mode used by Baidu does not as flagrantly reveal patterns as ECB
mode, there do exist circumstances in which patterns in the plaintext can still be revealed in the
ciphertext. Specifically, there exist circumstances in which there exists a counter-like pattern in
the plaintext which can be revealed by the ciphertext (see Figure 5 for an example). These
circumstances are possible due to the fact that (IV + i) is XORed with each plaintext block i
before encryption. Thus, if the plaintext exhibits similar counting patterns as (IV + i), then for
multiple blocks the value ((IV + /) XOR plaintext block /) may be equivalent and thus encrypt to
an equivalent ciphertext.

https://commons.wikimedia.org/wiki/File:Tux.svg#/media/File:Tux.svg
https://commons.wikimedia.org/wiki/File:Tux_ECB.png#/media/File:Tux_ECB.png

Block Plaintext Ciphertext
0 [ooJoofoojoofoojoofoojoofoofoofoojoojoofooloofoole2fa4oofic|ce[5d|80[33|0clbolas|7d]as|27]72]7a
1 [ozfoojoojoofoofoojoojoofoofoo]oojoofoofoo]ooloole2{d4|00|1c|c65d|80|33|0cfbol48]|7d|d5|27(72]7a
Figure 5: When encrypted with the randomly generated key
“x96f\x08\xd10\x80\x82\x86\xa7\xb7\xdaC\x96\xee\xd1\xa2” and IV “H[T\x92\x0c\x80\xa6
)o\x95\xe5\xc5j=\xe2” using Baidu’s modified CTR mode, the above plaintext blocks encrypt to
the same ciphertext.

More generally, this cipher mode fails to provide the cryptographic property of diffusion.
Specifically, if an algorithm provides diffusion, then, when we change a single bit of the plaintext,
we expect half of the bits of the ciphertext to change. However, the example in Figure 5
illustrates a case where changing a single bit of the plaintext to form the following block caused
zero bits of the ciphertext to change in the following block, a clear violation of the expectations
of this property. The property of diffusion is vital in secure cryptographic algorithms so that
patterns in the plaintext are not visible as patterns in the ciphertext.

Other privacy and security weaknesses

There are other weaknesses in the custom encryption protocol designed by Baidu Input Method
that are not consistent with the standards for a modern encryption protocol used by hundreds of
millions of devices.

Forward secrecy issues with static Diffie-Hellman

The use of a pinned static server key means that the cipher is not forward secret, a property of
other modern network encryption ciphers like TLS. If the server key is ever revealed, any past
message where the shared secret was generated with that key can be successfully decrypted.

Lack of message integrity

There are no cryptographically secure message integrity checks, which means that a network
attacker may freely modify the ciphertext. There is a CRC32 checksum calculated and included
with the plaintext data, but a CRC32 checksum does not provide cryptographic integrity, as it is
easy to generate CRC32 checksum collisions. Therefore, modifying the ciphertext may be
possible. In combination with the issue concerning key and IV reuse, this protocol may be
vulnerable to a swapped block attack.

Mitigation

In order to address the reported issues, Baidu Input Method should secure all transmissions
using a popular, up-to-date implementation of HTTPS or, more generally, TLS instead of relying
on custom-designed cryptography to secure the transmission of sensitive user data.

https://en.wikipedia.org/wiki/Confusion_and_diffusion
https://en.wikipedia.org/wiki/Forward_secrecy

